Sponser's Link

Followers

Archives

Online Users


Cell phones last a few days on a single battery; laptop computers, two to three hours. If you could have a pocket-sized personal computer with a cell-phone sized battery, how long do you think it would last? Just long enough to check your e-mail, or play a game of solitaire? It’s a sad but unavoidable fact that the more complicated an electronic device gets, the less efficient it is. Enter fuel cells, with an energy capacity at least ten times greater than that of conventional batteries. Where a lithium-ion battery can provide 300 Watt-hours per liter, the methanol in a fuel cell has a theoretical capacity of up to 4800 Watt-hours per liter! Imagine your laptop running for a full day without needing to recharge, and you can see why industry leaders such as Toshiba, IBM, and NEC have been pouring funds into fuel cell research.A polymer-electrolyte membrane (PEM) fuel cell generates current by stripping hydrogen atoms from a chemical source, breaking them apart on a catalyst (such as platinum), and harvesting the electrons. The hydrogen ions (protons) left over from this process are separated from the fuel by an electrolyte, and when brought into contact with the atmosphere they bind to oxygen molecules and produce water. The more fuel you can bring into contact with the catalyst, the more current can be drawn from the cell. A high catalytic surface area is the key to efficiency.To compress more power into smaller volumes, researchers have begun to build fuel cells on the fuzzy frontier of nanotechnology. Silicon etching, evaporation, and other processes borrowed from chip manufacturers have been used to create tightly packed channel arrays to guide the flow of fuel through the cell. The point is to pack a large catalytic surface area into a wafer-thin volume. This approach is not only expensive, but inherently limited by its two-dimensional nature.
Cell phones last a few days on a single battery; laptop computers, two to three hours. If you could have a pocket-sized personal computer with a cell-phone sized battery, how long do you think it would last? Just long enough to check your e-mail, or play a game of solitaire? It’s a sad but unavoidable fact that the more complicated an electronic device gets, the less efficient it is. Enter fuel cells, with an energy capacity at least ten times greater than that of conventional batteries. Where a lithium-ion battery can provide 300 Watt-hours per liter, the methanol in a fuel cell has a theoretical capacity of up to 4800 Watt-hours per liter! Imagine your laptop running for a full day without needing to recharge, and you can see why industry leaders such as Toshiba, IBM, and NEC have been pouring funds into fuel cell research.A polymer-electrolyte membrane (PEM) fuel cell generates current by stripping hydrogen atoms from a chemical source, breaking them apart on a catalyst (such as platinum), and harvesting the electrons. The hydrogen ions (protons) left over from this process are separated from the fuel by an electrolyte, and when brought into contact with the atmosphere they bind to oxygen molecules and produce water. The more fuel you can bring into contact with the catalyst, the more current can be drawn from the cell. A high catalytic surface area is the key to efficiency.To compress more power into smaller volumes, researchers have begun to build fuel cells on the fuzzy frontier of nanotechnology. Silicon etching, evaporation, and other processes borrowed from chip manufacturers have been used to create tightly packed channel arrays to guide the flow of fuel through the cell. The point is to pack a large catalytic surface area into a wafer-thin volume. This approach is not only expensive, but inherently limited by its two-dimensional nature.

Catalysts are used with fuels such as hydrogen or methanol to produce hydrogen ions. Platinum, which is very expensive, is the catalyst typically used in this process. Companies are using nanoparticles of platinum to reduce the amount of platinum needed, or using nanoparticles of other materials to replace platinum entirely and thereby lower costs.Fuel cells contain membranes that allow hydrogen ions to pass through the cell but do not allow other atoms or ions, such as oxygen, to pass through. Companies are using nanotechnology to create more efficient membranes; this will allow them to build lighter weight and longer lasting fuel cells.

How can nanotechnology improve fuel cells?

Small fuel cells are being developed that can be used to replace batteries in handheld devices such as PDAs or laptop computers. Most companies working on this type of fuel cell are using methanol as a fuel and are calling them DMFC's, which stands for direct methanol fuel cell. DMFC's are designed to last longer than conventional batteries. In addition, rather than plugging your device into an electrical outlet and waiting for the battery to recharge, with a DMFC you simply insert a new cartridge of methanol into the device and you're ready to go.Fuel cells that can replace batteries in electric cars are also under development. Hydrogen is the fuel most researchers propose for use in fuel cell powered cars. In addition to the improvements to catalysts and membranes discussed above, it is necessary to develop a lightweight and safe hydrogen fuel tank to hold the fuel and build a network of refueling stations. To build these tanks, researchers are trying to develop lightweight nanomaterials that will absorb the hydrogen and only release it when needed. The Department of Energy is estimating that widespread usage of hydrogen powered cars will not occur until approximately 2020.
Catalysts are used with fuels such as hydrogen or methanol to produce hydrogen ions. Platinum, which is very expensive, is the catalyst typically used in this process. Companies are using nanoparticles of platinum to reduce the amount of platinum needed, or using nanoparticles of other materials to replace platinum entirely and thereby lower costs.Fuel cells contain membranes that allow hydrogen ions to pass through the cell but do not allow other atoms or ions, such as oxygen, to pass through. Companies are using nanotechnology to create more efficient membranes; this will allow them to build lighter weight and longer lasting fuel cells.

How can nanotechnology improve fuel cells?

Small fuel cells are being developed that can be used to replace batteries in handheld devices such as PDAs or laptop computers. Most companies working on this type of fuel cell are using methanol as a fuel and are calling them DMFC's, which stands for direct methanol fuel cell. DMFC's are designed to last longer than conventional batteries. In addition, rather than plugging your device into an electrical outlet and waiting for the battery to recharge, with a DMFC you simply insert a new cartridge of methanol into the device and you're ready to go.Fuel cells that can replace batteries in electric cars are also under development. Hydrogen is the fuel most researchers propose for use in fuel cell powered cars. In addition to the improvements to catalysts and membranes discussed above, it is necessary to develop a lightweight and safe hydrogen fuel tank to hold the fuel and build a network of refueling stations. To build these tanks, researchers are trying to develop lightweight nanomaterials that will absorb the hydrogen and only release it when needed. The Department of Energy is estimating that widespread usage of hydrogen powered cars will not occur until approximately 2020.

Sponser's Link